几乎所有合同都要规定单位开采成本限度。仅仅找到矿源还不够,开采还不得超过一个特定的单位成本。这个单位成本又反映矿体的丰富程度、远景、当地劳力供应、政治条件,以及有无必要修建机场、道路、医院、矿场和精炼厂等等。
没有规定单位开采成本限度就签订合同,这就说明有人急需蓝金刚石,以致不惜代价。
不出48小时,有人就在公司食堂内对蓝色合同作了解释。Ⅱb型金刚石呈蓝色是因为它里面含有微量硼元素。它作为宝石是毫无价值的,但它的电子特性发生了变化,成为每公分具有100欧姆电阻的半导体。它还有光传导性能。
有人在1978年11月17日的《电子新闻》中看到一篇题为《麦克菲公司放弃掺硼技术》的短文。这篇文章解释说,马萨诸塞州沃尔瑟姆硅酸盐公司已经放弃了在金刚石上镀单层硼的麦克菲技术的试验。放弃的原因是成本太高,而且生产出的东西在“理想的半导体性能”方面并不可靠。这篇文章得出结论说:“别的公司低估了镀单层硼的问题。今年9月芳贺见知公司(东京)放弃了长浦工艺。”这样,在地球资源技术服务公司的食堂里,人们通过回顾过去一段时间的情况后又解开了几个谜。
早在1971年,圣克拉拉①的英特克微电子公司首先预测,金刚石半导体将在80年代新一代“超级”电脑中起重要作用。
①古巴中部城市。
第一代电子计算机是电子数字积分计算机和通用自动电子计算机。它是40年代战争时期在保密情况下研制的,采用的是真空管。真空管的平均寿命是20小时。在一架机器中有数以千计的炽热的电子管,有些计算机每7到20分钟就要关机更换电子管。电子管限制了研制中的第二代计算机的规模和功率。
然而,第二代计算机并没有使用真空管。1947年,晶体管——指甲盖大小的一片固体夹层材料就具有真空管的全部功能——的发明开始了“固态”电子设备的新时代,这样的设备耗电很少,发出的热量很小,体积比电子管小,但可靠性却比电子管高。在此后20年中,硅技术为三代电脑的越来越小型化、可靠和便宜奠定了基础。
到了70年代,电脑设计师们开始面临硅技术的固有极限。虽然线路已经微型化,但计算速度仍然取决于线路的长度。把已经是百万分之一英寸的线路进一步小型化带来了老问题:散热问题。进一步小型化就会使线路被自身产生的热量所融化。因此要找到某种既能消除热量又能降低电阻的方法。
从50年代起,人们就知道,在非常低的温度下许多金属就变成了“超导体”,电子就可以在其中畅通无阻。1977年,国际商用机器公司宣布:它正在设计一种只有一粒葡萄大小、用液体氮冷却的超高速电脑。这种超导体电脑要求一种全新的技术和一系列的低温结构材料。
掺硼金刚石将在全系统中广泛使用.
几天以后,地球资源技术服务公司的食堂里出现了另一种解释。按照这种解释,70年代是电脑空前增长的十年。虽然40年代的第一批电脑制造者预言,在可预见的将来,4台电脑就能担负全世界的计算工作,专家们却预测,到1990年世界上将有10亿台电脑,而且其中大多数是通过通讯网络联接起来的。这种网络并不存在,而且在理论上也许就不可能。(汉诺威研究所1975年的一项研究得出的结论是:地球上没有足够的金属来建造电脑导线。)
根据哈维·朗鲍的说法,80年代将出现电脑信息传输系统奇缺的状况:“正如70年代工业化国家受到了石油短缺的突然冲击一样,在此后十年中世界将受到信息传输短缺的突然冲击。70年代人们无法行动,而80年代人们将得不到信息。这两种情况哪一种更加麻烦还有待证明。”
激光是处理如此巨量信息的希望,因为激光比普通金属同轴电缆干线传输的信息多2万倍。激光传输要求全新的技术,包括纤细的光纤维和掺硼半导体金刚石,因此朗鲍预测,在未来的岁月中这些材料“将比石油贵重”。
更有甚者,朗鲍预测,十年之内电本身都会过时。将来电脑只用光,与光传输信息系统联接。这样做是为了增加速度。朗鲍说:“光以光的速度运动,而电做不到。我们生活在微电子技术的最后年代。”
当然,微电子技术并不像是一种垂死的技术。1979年,微电子技术工业在工业化世界中是主要工业,仅在美国年产值就达到800亿美元。《财富》杂志所列的500家大公司中,排在前20名的大公司中有6家与微电子工业有很大关系。在过去不到30年中,这些公司都经历了激烈竞争,取得了非凡的进步。
耽美书斋推荐浏览: 迈克尔·克莱顿